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Here, we consider discontinuous nonequilibrium phase transitions to poisoned or ‘“adsorbing” states
in lattice-gas models of surface reactions. Specifically, we examine the monomer or CO-poisoning transi-
tion in the Ziff-Gulari-Barshad monomer-dimer reaction model for CO oxidation, modified to include
adspecies diffusion. For CO pressures below the poisoning transition, we first characterize the propaga-
tion of and fluctuations at an interface between reactive and CO-poisoned states. Here, we utilize ideas
from spatial contact models, reaction-diffusion theory, and kinetic roughening theory. Evolution is de-
scribed by the Kardar-Parisi-Zhang equation, but with the nonlinearity and kinetic surface tension van-
ishing on approaching the transition. Next, again for CO pressures below the transition, we consider the
evolution of a “nucleus” of the reactive state embedded in the CO-poisoned state, now exploiting con-
cepts from epidemic theory. We elucidate the divergence and “sharpening” of the critical size of this nu-
cleus, both approaching the transition and with increasing adspecies diffusion rates. The deviation from
mean-field divergence approaching the transition is related to the vanishing of the kinetic surface ten-
sion. The sharpening is related to the reduced influence of fluctuations. Throughout this contribution,
we focus on providing a unifying framework that can describe both the fluctuation-dominated behavior
of the lattice-gas model for low adspecies diffusion rates, and the crossover to the deterministic mean-
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field behavior for high diffusion rates where the adlayer is well mixed or randomized.

PACS number(s): 05.40.+j, 82.65.Jv, 82.20.Mj

I. INTRODUCTION

Stochastic lattice-gas models have been increasingly
applied to describe far-from-equilibrium processes where
rates violate detailed balance, and also to describe open
systems. These processes include surface reactions which
often exhibit nonequilibrium phase transitions between
reactive steady states and poisoned or ‘“adsorbing” states
[1,2]. A detailed understanding is emerging of such con-
tinuous or second-order poisoning transitions, and of as-
sociated universality issues [3]. However, it is discontinu-
ous or first-order poisoning transitions that are most
commonly observed in surface reaction experiments, and
which underlie the rich nonlinear dynamical phenomena
and spatiotemporal behavior that have generated so
much interest in these systems [4]. Thus, here we focus
on characterizing the behavior associated with discon-
tinuous poisoning transitions in lattice-gas models for
surface reactions. Specifically, here we analyze the Ziff-
Gulari-Barshad monomer-dimer reaction model [5] for
CO oxidation, modified to incorporate diffusion of both
adspecies [6—8]. This model exhibits a discontinuous
transition from a reactive steady state to a trivial adsorb-
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ing monomer or CO-poisoned state, with increasing
monomer or CO pressure [5-8].

The fundamental motivation for lattice-gas modeling
of surface reactions is that this approach has the poten-
tial to provide a realistic description of fluctuations and
correlations which are ignored in traditional mean-field
treatments. These fluctuations and correlations result
from the adsorption and reaction processes, as well as
from adspecies interactions. Indeed most lattice-gas mod-
eling to date has included zero or low adspecies diffusion
rates, which has resulted in “anomolously large” fluctua-
tions and correlations generated by the adsorption and
reaction processes [2]. We also emphasize that it is these
fluctuations which produce or “automatically select” the
discontinuous transition in the reaction model, and their
large amplitude is responsible for the weak metastability
observed in simulation studies [2]. However, in real sys-
tems, high diffusion rates for at least some adspecies lead
to a randomization of the adlayer (for weak adspecies in-
teractions), quenching the correlations and fluctuations
due to adsorption and reaction, and producing the strong
metastability (or “bistability”’) and hysteresis [4]. The
latter observations motivate our inclusion and analysis of
the effects of adspecies diffusion in the model.

Just as for discontinuous transitions in equilibrium sys-
tems, a primary goal of our analysis of corresponding
nonequilibrium transitions is the elucidation of associated
interface evolution and nucleation phenomena. Clearly,
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conventional equilibrium free-energy ideas [9] are not ap-
plicable for nonequilibrium poisoning transitions, so here
we utilize a diverse variety of alternative conceptual
tools. We first consider the evolution of planar interfaces
between the stable reactive and the CO-poisoned states
for CO pressures below the poisoning transition, noting
that such propagation is stable only because of the ad-
sorbing character of the “metastable”” CO-poisoned state.
The behavior of the propagation velocity is elucidated by
integrating ideas from spatial contact models (SCM) [10],
which provide a paradigm for propagation in the absence
of diffusion, with traditional synergetic reaction-diffusion
theory of trigger or chemical wave propagation [11]. We
also characterize the fluctuations at this ‘“‘driven” inter-
face applying recently developed theories of kinetic
roughening [12], and showing in particular that the
Kardar-Parisi-Zhang equation [13] describes evolution
below the transition. To address nucleation issues, we
consider the growth probability P,(N) of a reactive patch
or “nucleus” of size N embedded in a CO-poisoned back-
ground. Again we just consider CO pressures below the
transition, where P, is well defined by virtue of the ad-
sorbing character of the poisoned state, analogous to epi-
demic theory studies [14-16]. We determine the critical
nucleus size N*, where P,(N =N *)=1, and then charac-
terize in detail the divergence and ‘“sharpening” of N*,
both approaching the transition and with increasing
diffusion rates. Here one finds indispensible the insights
into interface propagation and fluctuations obtained ear-
lier.

Another goal of our analysis is to elucidate the cross-
over from fluctuation-dominated behavior for low ad-
species diffusion rates to deterministic mean-field
behavior for rapid diffusion. Indeed, our model is select-
ed so that the latter behavior is described exactly by
mean-field rate equations (for spatially homogeneous
states). In the absence of fluctuations, these exhibit bista-
bility [1,2,4,11]. The discontinuous transitions in the
lattice-gas model correspond to the equistability point of
two such stable solutions [2,17]. In the mean-field theory,
this can be determined by introducing a macroscopic spa-
tial inhomogeneity and studying its evolution via ap-
propriate reaction-diffusion equations [2,17]. The associ-
ated planar interface propagation and nucleation phe-
nomena are well characterized [11] and elucidate
behavior of the entirely analogous phenomena studied in
the lattice-gas model.

As indicated above, precise analysis of interface propa-
gation and nucleation phenomena for the reaction model
is only possible because of the trivial adsorbing character
of the poisoned state. This allows for stable interface
propagation below the transition, and for unambiguous
determination of growth or extinction of an embedded
reactive nucleus. In contrast, for equilibrium discontinu-
ous transitions at nonzero temperatures, one can set up a
stable interface only right at the transition where two dis-
tinct phases coexist. Away from the transition, one of
these states is metastable or unstable, and the interface
will consequently break down. Similarly, a precise
definition of growth probability is not possible. Further,
we note that the complications apparent for equilibrium
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systems at nonzero temperatures are also present in this
nonequilibrium reaction model, either above the poison-
ing transition or if one introduces nonreactive desorption
of CO. Indeed, nonreactive CO desorption in the reac-
tion model is analogous to nonzero temperatures in the
equilibrium model [2,18].

The monomer-dimer surface reaction model considered
here, and details of its phase diagram, are, for the most
part, described in Sec. II. We do, however, leave the
description of the specifics of the determination of spino-
dals to Sec. III. The development of a general theoretical
framework for characterizing the propagation of a planar
“reactive interface” separating reactive and poisoned
states is presented in Sec. IV, and a description of fluctua-
tions at such interfaces is presented in Sec. V. Some basic
ideas and results from epidemic theory are presented in
Sec. VI to lay the foundation for the following discussion
of nucleation phenomena. The key results on critical size
scaling are presented in Sec. VII, and are elucidated in
terms of the propagation of curved reactive interfaces.
The scaling theory for the full size dependence of the
growth probability is detailed in Sec. VIII. Finally, some
brief conclusions are made in Sec. IX.

II. MONOMER-DIMER REACTION MODEL
AND ITS PHASE DIAGRAM

The monomer-dimer surface reaction model mimicking
CO oxidation involves adsorption of a monomer species
A (corresponding to CO), on single empty sites, adsorp-
tion of a dimer species B, (corresponding to O,) on adja-
cent pairs of empty sites, and reaction of different species
adsorbed on adjacent sites [2,5,19]. The impingement
rates for 4 and B, are denoted by y , and yj, respective-
ly, and are normalized so that y , +yz; =1. Below 6 , and
0y denote coverages of adsorbed species. The special
case of instantaneous reaction in the absence of surface
diffusion is referred to as the Ziff-Gulari-Barshad (ZGB)
model [5]. Here, we consider this adsorption-limited re-
action model on a square lattice and its generalization to
include adspecies diffusion. Specifically, we allow both
types of adspecies, 4 and B, to hop to nearest-neighbor
unoccupied sites at the rate h >0, for each possible direc-
tion [6~8]. Although it would be more realistic in model-
ing CO oxidation to include only diffusion of A4 (corre-
sponding to CO) [20], here we have included diffusion of
both species so that the adlayer is randomized in the limit
as h— o, and the process can be described exactly by
mean-field rate equations and reaction-diffusion equa-
tions. The nontrivial limit with just rapid diffusion of ad-
sorbed A (but not B) will be described elsewhere [2,21].

Figure 1 shows a schematic of the steady-state
behavior of the monomer-dimer model most relevant to
this study: (i) a discontinuous transition between a reac-
tive steady state and an A-poisoned adsorbing state at
¥4 =y,(h); (ii) metastable extensions of a reactive steady
state above y, to the spinodal y;,(h), and of the A-
poisoned state below y, to the spinodal y,_(h); (iii) an
ill-defined unstable branch (see Appendix A) joining the
spinodal points to complete a van der Waals type loop.
This model also exhibits a continuous B-poisoning transi-
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FIG. 1. Schematic of the phase diagram for the monomer-
dimer surface reaction. Shown is the discontinuous A-
poisoning transition at y , =y, and the spinodal points y, . and
ys— bounding the existence regions for the metastable reactive
and A-poisoned states, respectively. The spinodals are joined
by an ill-defined unstable branch which is dependent on system
size.

tion at y , =y,(h), where y, <y,. Simulations [6,15] sug-
gest that y, decreases from 0.3907 to zero as h increases
from zero to about 3. Many studies have considered
universality issues associated with the continuous transi-
tion [3,15]. However, as noted above, in this study we
focus exclusively on behavior associated with the first-
order transition. Several determinations of y, via simula-
tion starting from an empty lattice have been corrupted
[7,20,22] by the tendency of the system to remain in a
metastable reactive state for y, <y , <y, .. The situation
is exacerbated for h >0, where the range of metastability,
and the lifetime of the metastable state, increase dramati-
cally [2,17] with h. (This increase in the lifetime should
be expected quite generally [23] since one must recover
bistable mean-field behavior as h — «.) However, these
difficulties can be avoided by seeding the system with a
large domain of the poisoned phase [5], by using tech-
niques of epidemic analysis [16], or by using the “‘con-
stant coverage” (CC) ensemble simulation technique [24]
(see Appendix A). The values for y, in Table I are deter-
mined by the CC technique [24], with the h — oo limit
determined separately by an appropriate mean-field
reaction-diffusion equation analysis [1,8].

The above discussion has implicitly assumed that the
spinodals “exist,” i.e., are in some sense well defined, and
can be suitably determined. Just as in equilibrium
theory, and as is already evident from the above discus-
sion, one expects that the spinodals will at least play an
important conceptual role [9]. For example, traditional-
ly, the kinetics would be elucidated in terms of nucleation
phenomena only for pressures in the “metastable win-
dow” that surrounds the discontinuous transition and is
bounded by the spinodals. Indeed, this fact in part
motivates our analysis of nucleation phenomena in this
contribution. However, from studies of discontinuous
equilibrium transitions, one knows that the issue of ex-
istence of spinodals is nontrivial. It should also be em-
phasized that the precise characterization of interface
propagation and nucleation phenomena presented below

J. W.EVANS AND T. R. RAY 50

TABLE I. Transition and spinodal locations, and critical size
scaling exponents for various k. ¢(CC) [¢(P, =1 )] was estimat-
ed from a CC-ensemble analysis (from P, vs N) with uncertainty
+0.05 (+£0.1). h =« mean-field values [8] are also shown.

h Y2 Vs — Ys+ ¢ (CC) ¢(Pg:';‘)
0 0.5256 0.495 0.529 1.33 1.3

2 05522  0.44 0.564 1.46 1.6

1 0.5645 0.38 0.583 1.56 1.7

4 0.5794 0.23 0.61 1.72 1.9

o  0.595 0 2 2 2
actually does not rely on their existence. For these

reasons, we delay the discussion of spinodals to Sec. III.

III. DETERMINATION OF SPINODAL POINTS

In equilibrium theory, “pseudospinodal” points have
been defined by suitable analytic extension of unique
stable states [25], an approach that could also be applied
to the monomer-dimer reaction model [26]. Spinodals
have also been extracted from the behavior of coarse-
grained free energies or related quantities determined
from the Hamiltonian. However, such spinodal locations
depend on the introduced coarse-graining length scale,
prompting the conclusion that spinodals are ill defined
[9]. One difference between the equilibrium studies and
the reaction models is that only the latter have a unique
“intrinsic dynamics.” (Prescription of the Hamiltonian
does not uniquely determine a dynamics for equilibrium
models.) Thus, we naturally utilize the intrinsic dynam-
ics in the studies below of spinodals in reaction models
[26]. Another distinguishing feature of our reaction
model is that by increasing the adspecies hop rate h, one
can cross over to the A — o mean-field limit where the
spinodals are precisely defined.

We begin with a brief discussion of the upper spinodal
¥s+. Here we determine at least effective values of y
from analysis of scaling of the poisoning kinetics for y ,
above y, .. Specifically, one fits the kinetics to the form
60,~K [(y,4—ys4)t], regarding y, , as a free parameter
[26] (see Fig. 2). This scaling is well satisfied (for 4 not
too large [27]), and is very sensitive to the choice of y, . .
This leads to precise determination of the latter, which is
clearly distinct from y, (see Table I). Alternatively, a
pseudospinodal value for y, , can be determined from an-
alytic extension of the reactive steady state above y, to a
point where it becomes singular [26], the resulting value
agreeing reasonably with the above kinetic estimate for
h =0. Yet another alternative is to determine y,;, from
the CC technique [24], but this presumably leads to sys-
tem size dependent values.

Determination of the location of the lower spinodal
ys_ is even more problematic (for & < ). Clearly the
pseudospinodal approach of analytic extension of the
poisoned state below the transition cannot be applied
directly to determine y, _ (since the poisoned state is a
trivial adsorbing state). However, introducing into the
model nonreactive desorption of adspecies 4 with small
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FIG. 2. (a) Reaction kinetics for A =% for evolution from an
empty lattice to an A-poisoned state for various y , > y, . (as in-
dicated). (b) Scaled data using y, . =0.564; the collapse using
0.563 or 0.566 for y, , is noticeably worse.

rate d >0 preserves the discontinuous transition and
creates a nontrivial stable steady state (with 6 , < 1) above
the transition [2,18]. This state could be analytically ex-
tended below the transition to determine y, _(d >0), and
then finally one must take the limit d —0. However,
more practically, we find that effective values of y, _ can
be determined reasonably accurately (analogous to y,.)
from the kinetics of evolution from a near- A-poisoned
state for y , below y, .. We describe this kinetics by a
scaled form, 6 ,~K _[(y,_—y )t], regarding y_ as a
fitting parameter (see Fig. 3). Specifically, in these stud-
ies, an 800X 800 lattice is initially randomly filled with A
to 0 ,=0.95 or 0.97. The objective here is to create a
near- A-poisoned surface, with the constraint that the ini-
tial state must contain a substantial number of empty
pairs to avoid large fluctuations in the kinetics. (Most
isolated empty sites will be quickly filled with 4, causing
6 4 to initially increase much closer to unity.) Results for
ys— are insensitive to the choice of initial 6 , =0.95, and
clearly distinct from y, (see Table I).

Finally, we note that in approximate “dynamic clus-
ter” treatments of the rate equations for these models
[19,26,28], and in the exact rate equations for the h — o
mean-field limit, y;, corresponds to a saddle-node bifur-
cation [29] (for all d 2 0). In contrast, y,_ corresponds to
a transcritical bifurcation [29] (for d =0), only being con-
verted to a saddle-node bifurcation with the inclusion of
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FIG. 3. (a) Reaction kinetics for A =% for evolution from a

near- A-poisoned state with initial 6 ,=0.95 to the reactive
steady state for various y , <y,_ (as indicated). (b) Scaled data
using y,_ =0.44; the collapse using 0.43 or 0.45 for y,_ is no-
ticeably worse.

nonreactive A4 desorption (d >0). For h < o, the es-
timated positions of the spinodals generally vary strongly
with the order of the approximation. Corresponding esti-
mates of the location of the transition y, can only be ob-
tained after analysis of chemical wave propagation in ap-
proximations to inhomogeneous versions of the rate
equations [30].

IV. PROPAGATION VELOCITY OF A PLANAR
REACTION INTERFACE

Now we consider in some detail the propagation of (on
average) planar interfaces separating the metastable A-
poisoned state and the reactive steady state (see Fig. 4).
Unless otherwise stated, the interface will be aligned with
a principal axis direction of the square lattice of adsorp-
tion sites. We necessarily restrict our analysis to y,
below the A-poisoning transition y,, where the interface
is stable, and set A=y, —y , 20. Since the reactive state
is the only stable state for A >0, one expects that it will
displace the A-poisoned state, resulting in a propagation
velocity ¥, =V¥,(A)>0, say, normal to the interface. It is
also clear that Vp must vanish as A—0, where the two
states become equistable, so, in general, one writes
V,~A" as A—0, withy >0.

First we consider in detail the vanishing of ¥, at the
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FIG. 4. Snapshots of a portion (200 lattice spacings wide) of
the interface between reactive and poisoned states for A=0 and
for various A. Only A-filled sites are shown.

transition (for fixed 4 < «). The possibility that V, could
vanish nonlinearly, corresponding to y+1, should not be
immediately discounted. One perspective on this issue
comes from the realization that ¥, must correspond to
the asymptotic expansion velocity of a large surviving
reactive patch embedded in an A-poisoned background.
Then, as we shall see in Sec. V, ¥ can be determined from
standard epidemic exponents [16] as v(2—7%—8)/2. The
latter quantity is not trivially unity, since the individual
exponents are nontrivial and depend on model parame-
ters [16] such as h. For another perspective, note that
the interface between the (metastable) reactive state and
the (stable) 4-poisoned state is unstable above the transi-
tion, since the metastable reactive state will eventually
poison. Consequently, V), is ill defined for A <0. Thus, it
is not guaranteed that ¥, can be analytically extended
from A>0 to A <0, which would imply that y=1. On
the other hand, the existence of a metastable reactive
state above the transition, which allows the possibility of
establishing at least transient interface propagation with
V, <0, does suggest that y =1. Finally, we note that it is
at least clear that y —1 when A — 0. In that limit, inter-
face propagation can be described exactly by mean-field
reaction-diffusion equations [2,4,8,11,17]. Here, one finds
that interface propagation is stable on both sides of the
equistability point (corresponding to A=0) and that V,
vanishes linearly with A.

We now report on some simulation results for the
behavior of ¥V, approaching the transition (see Fig. 5).
One does indeed find that V,—0 as y ,—y, (or A—0),
where here y, is determined independently of a CC-
ensemble [24] analysis. From a different perspective,
determination of the pressure at which ¥, vanishes pro-
vides an accurate and efficient method for determination
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FIG. 5. Vanishing of the planar interface propagation veloci-
ty V, approaching the transition A—0 for various values of h
(shown). The y, values (see Table I) used to determine
A=y,—y, were determined independently from a CC-
ensemble analysis.

of y,, which avoids the above mentioned problems with
metastability. One expects that the case A =0 will pro-
vide the most demanding test of whether ¥ deviates from
unity (recalling that at least ¥y —1 when 4 — ). The
data in Table II are fit by ¥ =0.93+0. 1, strongly suggest-
ing that y=1. ¥, data for & >0 are even more convinc-
ingly fit by ¥=1. This strongly suggests that y(h)=1,
for all # >0, and implies a new scaling relation for epi-
demic exponents [16]. See Sec. V for further discussion.
This result that y(h)=1, for all & >0, will be important
for our analysis of nucleation phenomena in Sec. VII.

We now continue our analysis of the behavior of the
propagation velocity, focusing more on the dependence of
V, on h. Simulation results indicate a monotonic in-
crease of Vp with h, for fixed A, specifically from
V,=0(1), for h =0, to ¥V,~ Ah'7, as h— . We sug-
gest that a useful paradigm for propagation in the # =0
diffusionless regime is provided by SCM [10]. These are
models for the spread of information or disease by direct
contact between neighbors (see Appendix B). Somewhat
analogously, in our reaction model for & =0, the coupling
to spatial degrees of freedom is a consequence of the reac-
tion of species of different types on adjacent sites (and
also of the adjacent empty site adsorption requirement
for dimers). The h — o behavior is a consequence of the
fact that propagation in this regime is described exactly
by mean-field reaction-diffusion equations, where charac-
teristic lengths and velocities scale like the square root of
the diffusion coefficient. In fact, analysis of the appropri-
ate equations for our model (see Appendix C) leads to a
precise determination of the prefactor 4 and its depen-
dence on A.

TABLE I1. Vanishing of ¥, for y , approaching the transition at y, =0.525 60 for # =0. The uncer-

tainty in ¥, values is £0.0005.

0.064
0.515

v, 0127 0.087
0.510

y. 0500

0.105
0.505

0.0355
0.5200

0.0100
0.524 25

0.0060
0.52475

0.0205
0.5225

0.0140
0.523 75
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For a more complete elucidation of 2 =0 behavior and
the crossover to the h— o regime, it is instructive to
consider the following broader class of reaction models.
Suppose that reaction can occur between adsorbed 4 and
B separated by I lattice vectors with relative probabilities
p(l). Let 1?=31?p(1) denote the variance of this “con-
tact distribution” [10]. Reaction rates need not be
infinite here. Also, adspecies hopping at rate 4 is includ-
ed as above. Further, we assume that the influence of the
surface reaction is described by some pseudo-first-order
rate constant k. This would just correspond to the ad-
sorption rate in the case of instantaneous reaction or,
more generally, be determined by the rate limiting step.
Thus, the characteristic time scale is given by 7.=k ~\.
Both the diffusion length I, =(h7,)!/? and the contact or
reaction range /, provide contributions to the characteris-
tic length /.. Combining dimensional arguments with the
A dependence of ¥, mentioned above, one writes

V,~(, /7, )AT . 1)

Thus, one has ¥, ~kl,A” when kh =0, and V, ~(hk)'/>A"
as h—oo. We believe that y =1 for all A, and certainly
Y—1 as h— . Interpolation between these regimes
might be based on simple “diffusion approximation”
ideas for SCM [10], where one converts direct reaction
terms into a diffusionlike form assuming weakly varying
concentrations over a range /, (valid at least for A >>1).
This suggests an interpolation for /, between the # =0
and h — o regimes of the form [?>~cl?>+1? (see Appen-
dix B).

In the reaction model analyzed above, one has kK =1
and /,=1, and obtains an interpolation formula for ¥, of
the form

V,~ A(B +h)'"? for fixed A . 2)

We find that this form reasonably fits the data for fixed A,
even when 4 is not regarded as a fitting parameter, but
determined exactly from the mean-field reaction-diffusion
equations as described above (see Appendix C). For ex-
ample, when A=0.015, one finds that the variation
V,=0.086, 0.114, 0.143, 0.241, 0.385, for h =0, 3/8, 1, 4,
16, respectively, is fit reasonably by the mean-field value
of A =0.091, and choosing B ~1.2.

The above analysis of the behavior of the propagation
velocity ¥, normal to the interface applies exclusively to
planar interfaces aligned with the principal axis direction.
It is also instructive to determine whether the V, depends
on the orientation of the propagating planar interface.
Certainly V), is independent of orientation in the h —
limit, since the rotational symmetry of the underlying
square lattice implies that the macroscopic diffusion ten-
sor appearing in the reaction-diffusion equations must be
isotropic. One expects that any anisotropy for h < «, as-
sociated with the underlying square lattice, should be
strongest in the absence of diffusion. Thus, for h =0, we
compare V, for propagation of interfaces aligned in the
(1,0) direction, and tilted at 45° in the (1,1) direction (for
the same y ,). We find no anisotropy in V, to within the
statistical uncertainty (2%) of our measurements, e.g.,
V,=0.12681+0.0020 for the (1,0) direction, and
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V,=0.126610.0020 for the (1,1) direction, when
y4=0.5 (and h =0). We expect that, just as in the sim-
ple Eden growth model [31], anisotropy might exist, but
would be very weak. This observation will be exploited
in our analysis in Sec. V of fluctuations at the propa-
gating interface.

V. FLUCTUATIONS AT A PLANAR REACTION
INTERFACE: KPZ EVOLUTION

Next we characterize the fluctuations at (on average)
planar interfaces between reactive and A-poisoned states
for A=y, —y,=0. Examination of Fig. 4 reveals large
intrinsic local fluctuations for small h. These are largely
independent of time ¢ and small A, but are quickly
quenched with increasing 4. Based on general ideas asso-
ciated with the kinetic roughening of driven interfaces
[12], the total interface width or “fluctuation length” £ is
thus naturally written as £2~£2+£3 (cf. Ref. [32]). Here,
&; is associated with the above mentioned intrinsic local
fluctuations, and &, with long-wavelength nonlocal fluc-
tuations. The latter grow indefinitely with time, and ulti-
mately dominate the £; (for an infinite system). Below we
give a more detailed characterization of the evolution of
this fluctuating interface, and specifically of the growth of
&o-

The strategy is to develop a stochastic evolution equa-
tion providing a coarse-grained description of the propa-
gation of an on-average planar interface with “height” in
the direction (1,0) of » =h(x) at “lateral position” x in
the (0,1) direction (see Fig. 6). Then 0h /3t =V, ,, gives
the projection of the propagation velocity in the direction
of the principal axis (1,0). In general, this is expected to
depend on the tilt of the interface dA /dx, the curvature,
and, thus, on 3% /3x?, as well as on higher derivatives.
Consequently, assuming small mean local slopes, one nat-
urally invokes the Kardar-Parisi-Zhang (KPZ) [12,13]
type expansion

3h/3t=V, 4

=V,+1M3h /3x)?+Kkd’h /3x 2+ - - - +E(x),
3)

where {(x) denotes a §-function-correlated noise term
that generates the fluctuations, and odd powers of gra-
dients are absent in this expansion by symmetry.

We now exploit a key observation from Sec. IV that
the propagation velocity normal to the interface is
effectively independent of orientation and equals V,.
Thus for an on-average planar interface with mean in-
clination (3h/dx ), a simple Pythagorean construction
yields

(Vi1,00) =V,[1+(3h /3x )*]'2
~V,+1V,(3h/0x)*. @)

When compared with an approximation to (3) neglecting
fluctuations in 9k /3x, specifically,
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FIG. 6. Schematic of fluctuations in a coarse-grained picture
of reactive interface evolution.

(V1,00 = Vo+1A{(3h /3x)?)
~V,+1A(3h/3x)*, (5)

one finds that V= Vp, and A= Vp. One thus concludes
that the KPZ nonlinearity is necessarily present for
driven interface propagation below the transition A >0,
and that this nonlinearity necessarily vanishes as one ap-
proaches the transition where the interface is stationary.
The latter feature is, of course, true for any nondriven, or
equilibrium, situation, where the propagation velocity is
zero for all interface orientations. As an aside, we note
that an analysis of the Eden model for interface or cell
growth [31], where in addition the propagation velocity is
almost independent of interface orientation, provided the
original motivation for the KPZ equation [13].

Next we consider other terms in the evolution equation
(3). At the quadratic level, the presence of a nonlinear
term requires an additional linear term, 3%k /3x?, with
k>0 to stabilize interface propagation [33]. This term
describes the curvature dependence of the propagation
velocity which, e.g., efficiently damps out sinusoidal per-
turbations of the interface. Thus, « is naturally identified
as a kinetic surface tension. (We note that the value of «
depends on the length scale of observation [34].) We do
not discuss in detail the implicit higher-order terms in
Eq. (3) (which describe, for example, weaker stabilizing
effects), since the asymptotic roughening is controlled by
the quadratic terms for A > 0.

In general, for the stochastic evolution of driven inter-
faces along a strip of width L, one expects the long-
wavelength fluctuations to scale like [12]

Eo~Lof(t/L7) 6)

where f(x)~x? for x <<1 and f(x)—1 for x >>1, with
z=a/B. Thus, for an infinite system L — o, one has
£,~tP, as t— . For reactive interface propagation
below the transition A >0, where A >0 and x>0, the ex-
ponents must assume KPZ values [12,13] of =1, a=1,
and z=3.

More generally, kinetic roughening theory provides the
following picture of evolution of the driven reactive inter-
face for A>0. The propagating interface quickly equili-
brates locally with ¥, approaching its asymptotic value
like [35] £ ~2/3, and local structure being dominated by in-
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trinsic fluctuations for small 2. However, it will continue
to roughien globally according to KPZ dynamics with
B=1 and a=1 when A>0.

Finally, we comment on behavior approaching the
transition A—0, where ¥,=0 and the quadratic non-
linearity in the evolution equation vanishes. This limit is
of particular relevance for our study below of nucleation
phenomena. If the kinetic surface tension x were to
remain nonzero, then the KPZ equation would reduce to
the linear Edwards-Wilkinson equation [12] for which

=1 and a=1. However, for these reaction models, we
find that k—0 as A—0, a feature which is, in fact, shown
most clearly from our nucleation studies below. One thus
expects that B> when A=0, the actual value being
determined by the lowest-order terms appearing in the
evolution equation. Higher values of B correspond to
higher-order dominant terms, or weaker stabilizing
effects. (There are stabilizing mechanisms weaker than
the kinetic surface tension.) The maximum value of B is
1, corresponding to the lack of any stabilizing effects
[12]. From direct simulations of roughening at the tran-
sition where A=0, we find [36] B=B*=0.3 (and z*> 1),
clearly indicating the presence of weak stabilizing effects.
A detailed discussion of these and related studies will be
presented in a separate communication [36].

It is appropriate to compare this behavior with that of
interface propagation in the monomer (A)-monomer (B)
reaction model [37]. Here the stable steady state is A4-
poisoned (B poisoned) for y , >yp (v 4, <yp), producing a
discontinuous transition at y , =yp. For y ,=yp, the in-
terface between the A4- and B-poisoned states is in equi-
librium, so trivially the KPZ nonlinearity in the stochas-
tic evolution equation must be absent. However, simula-
tions [37] (for random adsorption) show that 8= 1, so no
kinetic surface tension or even any weaker stabilizing
mechanisms are present. This difference from the
monomer-dimer model should not be surprising, since,
e.g., the “trivial” transition in the monomer-monomer
model does not display any metastability in the sense of
Sec. III.

VI. EPIDEMIC THEORY FOR REACTION MODELS

Here we review and refine some relevant concepts and
ideas from epidemic theory [14—16] that apply to “nu-
cleation phenomena” in the reaction models under con-
sideration. Specifically, we consider the evolution for
A=y,—y,>0 of a “reaction epidemic” initiated by
embedding a roughly square patch of N empty sites in an
A-poisoned background. Basic quantities of interest in-
clude the survival probability P (N,t) and the average
number of empty sites, N,(N,t?), at time ¢, where tradi-
tionally the latter quantity is averaged over all (surviving
and extinct) epidemic trials. Traditionally, epidemic
theory regards N as fixed and analyzes the variation of
these quantities with ¢z and A. For fixed N, one expects
the scaling forms [14-16]

P.(t)~t%(At'"") and N,(t)~t"f(At'™), (7

where 8, 7, and v are nontrivial scaling exponents. Since
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there are no long range correlations at the discontinuous
transition which could “wash out” dependence on model
details, these exponents will depend on model parame-
ters, i.e., there is no universality [16].

Since a reactive state rather than the A4-poisoned state
is the stable steady state for A=y, —y >0, there is a
nonzero (asymptotic) growth probability,
P,(N)=P((N,t—»)>0. This corresponds to the non-
poisoned patch surviving indefinitely and thus spreading
the reactive steady state across the surface. Consequent-
ly, one must have [14—16] ¢(x)~x*® as x — o, which
implies that P, ~A" as A—0.

One also expects that surviving epidemics are, on aver-
age, circular, and expand with asymptotically constant
velocity. This asymptotic velocity must equal V,, since
the perimeter of a surviving epidemic becomes locally
planar. Consequently, one must have N,~P,( th)2,
from which it follows that f(x)~x“2"" and, therefore,
that ¥2~A"2777%. Since ¥,~A7 from Sec. IV, one
finally obtains [16] ¥y =v(2—n—8)/2, which is the rela-
tion mentioned in Sec. IV connecting ¥ with “standard”
epidemic exponents. Consequently, the observation that
y=1 provides a new and nontrivial scaling relation for
these exponents.

To determine 8=3&(h), one naturally analyzes the
behavior of P,~t % when A=0 (see Fig. 7). One finds
that [16] 8(A =0)=3.7%0.3, but that § increases quickly
with h, making it difficult to determine precisely, except
for very small A. For example, only by running ~10’
epidemic trials are we able to determine that
8(h =3)=~12. The origin of this behavior is clear. For
h >>0, the N initially empty sites are quickly dispersed by
diffusion, and since only A can absorb on isolated empty
sites (with rate y,), it follows that P ~1—[1
—exp(—y 4t)]¥ as h— o (for fixed #). Thus, for A >>0,
one expects that P, will be very small upon reaching the
asymptotic regime.

We emphasize that even for h =0, 8 is very large com-
pared with the directed percolation value [14,15] of 0.45,
so there are relatively few surviving epidemics. It seems
clear that the asymptotic behavior of N, will be driven by
this feature and, thus, will be particularly difficult to
determine. Furthermore, the value of 7 will reflect the
large value of 8. These considerations also suggest that it
is more appropriate to consider the average number of

8]
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FIG. 7. Epidemic survival probability P, vs ¢ at the transition
A=0 starting with a 2X 1 empty patch in an A-poisoned back-
ground. Behavior is shown for k =0and h =3.
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FIG. 8. Average number of empty sites in surviving epidem-
ics N,=N, /P; vs t at the transition A=0, starting with a 2X1
empty patch. Behavior is shown for h =0and h = %

empty sites per surviving epidemic, N,=N,/P,~t",
when A=0 (see Fig. 8). It then follows that n=—58+17’,
with ' >0, so y=v(1—7')/2. We obtain 0=7%"<0.6 for
h =0 from the behavior of N, for the temporal range
t 225 where growth apparently occurs at a lower rate.
This slower asymptotic growth is not readily discernable
directly from N, behavior, and so corresponding previous
direct estimates of 7 were inaccurate [16,38]. Estimation
of ' for h >0 is more difficult, e.g., even our h =3 data
are inadequate for this purpose. Finally, we note that the
requirement that ¥y =1 and a previous estimate [16] of
v=0.91£0.3 for A =0 suggest that the actual value of 7’
is somewhat smaller than 0.6.

VII. NUCLEATION PHENOMENA:
CRITICAL SIZE BEHAVIOR

To elucidate the nucleation of the reactive steady state
from a near- A-poisoned state below the transition, where
A=y, —y,>0, one naturally attempts to characterize
the evolution of a reactive (or empty) patch embedded in
an A-poisoned background, as described in Sec. VI.
However, in contrast to traditional analyses of epidemic
theory, here one naturally focuses on the dependence of
the patch or nucleus growth probability P, on the initial
size N of the embedded patch (at fixed A). From this
dependence, one can extract the quantity of primary in-
terest, critical size N*, for which the embedded patch or
nucleus has an equal chance of growth and survival or
shrinkage and extinction, i.e., P,(N =N*)=1. It is clear
that the critical size N* should diverge approaching
A—0, where the driving force for the reactive state to
displace the poisoned state vanishes. Thus, also invoking
dimensional arguments, one naturally writes

N*~I2A"% as A0, (8)

with a nontrivial exponent ¢ >0. Here we discuss the
dependence of N* on A and k, embodied in this relation,
leaving an analysis of the full dependence of P, on N to
Sec. VIIIL.

Table III summarizes our results for N* determined
from the N dependence of P, via P,(N =N*)=1. Here
we also utilize a different technique to more directly and
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TABLE III. Estimates of critical sizes N* chosen as the ini-
tial number of empty sites, and determined from the relation

Py(N*)=4. For h=3, we also obtain N*=690 for
9..=0.5463, and N* =175 for y , =0.5395.
h=0
N* 840 310 137 79 42
v, 0.523 0.520 0.515 0.510 0.500
h=23
N* 900 350 97
v, 0.5463 0.5411 0.525
h=4
N* 4360 1430 460
Y 0.573 0.568 0.551

accurately determine N*. This technique, described in
detail in Appendix A, exploits a special feature of the
CC-ensemble approach [24] to automatically select criti-
cal sized nuclei. Corresponding results are shown in
Table IV. First, we consider the divergence of N* as
A—0. From both techniques, one finds a consistent
trend in values for the nonuniversal exponent ¢=¢(h)
(see Table I). Clearly, ¢(h)<2 for h < «, and ¢(h) in-
creases monotonically toward the mean-field value of
¢=2 (see below) as h — . Next, we consider the varia-
tion of N* with increasing 4 (for fixed A). Interpolation
of the precise CC-ensemble data for N* (see Table V) re-
veals a quasilinear variation N*=E (F +h). This is ex-
pected from the relation /2~ cl2+12 proposed in Sec. IV,
and is consistent with mean-field behavior N* ~Eh as
h— o, where E ~eA~? as A—0 (see below and Appen-
dix C). Indeed, the data of Table V are fit roughly using
independently determined exact mean-field values of

E =95, 265, 1680 for A=0.03, 0.0175, 0.0066, and
choosing F =1, 0.5, 0.2, respectively. These E values
were obtained from an analysis of the appropriate mean-
field reaction-diffusion equations for a circular patch of
the reactive state embedded in an A-poisoned back-
ground (see Appendix C).

We now elucidate the observed critical size behavior,
exploiting some observations about the propagation of
curved interfaces between reactive and A-poisoned states,
and also utilizing some corresponding mean-field results.
Consider again a circular reactive patch of radius R, em-
bedded in an A-poisoned background for A >0. From the
KPZ equation [13], one finds that the interface propaga-
tion velocity is modified by curvature and, furthermore,
the correction is given by x/R as R — «. Here, we write
the KPZ kinetic surface tension as k~A°l2/7, for small
A, based on dimensional arguments and allowing for pos-
sible A dependence (if 070). Thus the mean outward
propagation velocity V' (R) of this patch should satisfy

V,—V(R)~k/R for large R >>I, . 9)

Now, if R* denotes the critical radius satisfying
N*=7(R*)% then one has V(R *)=0. Consequently, it
follows that

*=k/V,=A%12/(1,V,)~I,A°"7 as A—0 . (10)

Thus, for consistency with N*~12A "¢, we require that
o=(2y—¢)/2, or 0 =(2—¢)/2, setting y =1, which in
either case gives 0 >0 if A < o. Thus, our results for the
divergence of the N* show clearly that the kinetic surface
tension between coexisting states vanishes at the transi-
tion (for & < «) and, in fact, provides a precise character-
ization of this behavior. This is quite different from equi-
librium behavior, but not unprecedented for reaction sys-
tems [37] as noted in Sec. V.

TABLE IV. CC-ensemble estimates of y , values for various critical sizes N* =L%(1—6%), chosen as
the number of non- 4 sites. Note that one obtains ¢=1.65 for h =% using y, =0.5739 augmenting the

results in Table 1.

h=0
N* 1282X0.2=3277 1282X0.1=1638 642X0.1=410 322X0.1=102
Ya 0.5242 0.5232 0.5191 0.5064
=3
B
N* 100%X0.2=2000 64?%X0.2=819 642X 0.08=1328 322X0.1=102
Ya 0.5483 0.5455 0.5395 0.5192
h=1
N* 1642 X0.15=4034 100%X0.25=2500 64°X0.1=410 322X0.15=154
Y4 0.5606 0.5592 0.5470 0.5246
=9
3
N* 164°X0.15=4034 100% X 0.25=2500 647X 0.108 =442 64%X0.06=246
Ya 0.5672 0.5652 0.5467 0.5285
h =4
N* 164?X0.26=6993 100%X0.255=2550 100? X 0.2=2000 64°X0.2=819
Ya 0.5728 0.5675 0.5658 0.5545
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TABLE V. Interpolated CC-ensemble data showing the
dependence of the critical size N* on h.

A 0.03 0.0175 0.0066 0.0040
h
0 115 402 805
3 114 210 840 1920
1 190 410 1790 3880
4 630 1320 6990

Note that consideration of the behavior of k is general-
ly complicated by the fact that its value (for fixed A) in-
creases with the length scale ! of observation [34]. For
the above nucleation studies, one might set [39] /~R*,
so this effect alone would lead to an increase in k as
A—0. However, the above results show that any such
effect is dominated by an intrinsic decrease in kK as A—0.

Finally, we elucidate the limiting 4 — c mean-field
behavior mentioned above. In this limit, evolution of the
reactive nucleus is described by the appropriate reaction-
diffusion equations naturally cast in a cylindrical coordi-
nate system [11] (see Appendix C). It follows immediate-
ly as a direct consequence of the form of the Laplacian
diffusion operator in a curvilinear coordinate system that
the influence of curvature on interface propagation veloc-
ity is described by [11]

V,—V(R)~h/R for large R >h'" (11)

and, consequently, R*~h/V, or N*~mu(h/V,)*. Since
V,~h'?A as A0 (so y=1), it follows that N*~hA™?
as A—0 and, thus, ¢(h — 0 )=2. It is also interesting to
note that since the reaction-diffusion equations produce
the same form for V' (R) versus R as obtained from con-
sideration of the stochastic evolution equation for general
h, we can identify the kinetic surface tension k with 4 as
h— .

VIII. NUCLEATION PHENOMENA: GROWTH
PROBABILITY VERSUS PATCH SIZE

For a more complete characterization of the nucleation
phenomena examined in Sec. VII, it is appropriate to
consider the full dependence of the growth probability P,
of the reactive or empty patch embedded in the A4-
poisoned background on the initial patch size N. For ex-
ample, Fig. 9(a) shows the behavior of P, versus N for
h =0 and various y , or A. Clearly, P, increases more
slowly with N as one approaches the transition (i.e., as
A—0), corresponding to the increasing critical size. It is
thus more natural to consider P, versus N/N *, as shown
in Fig. 9(b). More generally, here we shall analyze
changes in the dependence of P, on N/N*, both in the
limit as A—O0 (at fixed A) and also in the limit as h — oo
(at fixed A).

To this end, we propose the approximate, but general,
scaling form

P,~G[(N/N*—1)/0(N*)] for N/N*=0(1), (12)
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FIG. 9. (a) P, vs N for various y, when & =0; (b) the same
data replotted as P, vs N/N*.

where G(0)=1, G(x)—0 as x > — e, and G(x)—1 as
x — . The parameter o measures the “width” of the
transition region in P, from O to 1, or the degree of
smoothing of P, from the step-function form
P,=H(N/N*—1). Here H(x)=0(1) for x <0 (x >0).
The latter is characteristic of the deterministic mean-field
limit (where o0—0). From another perspective,
8N ~ N*o measures the degree of uncertainty, or “fuzzi-
ness,” in the critical size.

Our key proposition is that the degree of fuzziness in
the critical size (i.e., the magnitude of o) is controlled by
the size of the fluctuations at the perimeter of the critical
nucleus.  More  specifically, let SR ~8(N!/?)
~(N*)"128N ~(N*)"2g ~R *o denote the uncertainty
in the critical radius, i.e., the range of R for which P,
differs significantly from O or 1. Then one expects that
8R~R*o roughly equals the fluctuation length
E=(E2+£2)'% if E<R*, or that SR roughly equals R * it-
self if R * < £ (fluctuations dominate). This implies that

o~min(1l,§/R*) . (13)

We first apply these ideas to elucidate the behavior of
P, versus N/N* as A—O (i.e., approaching the transi-
tion) for fixed A. Consider first the case A =0 already
shown in Fig. 9(b). Recall that here there are large in-
trinsic fluctuations §; ~20 (lattice vectors) and that £> §;.
Now, since R* <16 for A>0.005 from Tables III-V, it
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FIG. 10. Growth probability P, vs N/N* for y ,/y,=0.95,
0.98, 0.99 when (a) h =0, (b) h =4. Significant sharpening as
y4/y,—11is only evident in this range for (b). Thus, we include
additional data for y , /y, =0.995 (dotted line) in (a) to demon-
strate asymptotic sharpening trend as y , /y, —1 (or A—0).

follows that o =1 in this range, explaining the collapse of
corresponding curves and lack of sharpening in Fig. 9(b).
Indeed, this previously observed lack of sharpening [16]
was used to obtain an independent estimate of ¢ for h =0
(see Ref. [40]). However, as A—0, eventually R * must
dominate &, at which point o will start to decrease. The
onset of this sharpening only occurs around A=0.0025
[see Fig. 10(a)], where R * > 20 (see Tables III-V) exceeds
&;, and & is still relatively small. In contrast, significant
sharpening of P, is observed for » =4 with decreasing A
over the much broader range A <0.03 [see Fig. 10(b)],
since here R * = 14 (Tables III-V) dominates both £; and
&y, and thus §&.

To determine the asymptotic behavior of o, as A—0,
where R* — o and £~ £, one can utilize the scaling rela-
tion for £, described in Sec. V. For the circular geometry
of relevance here, one must set t ~L ~R, and using z > 1,
one then obtains £,=£y(R)~RP. For fixed A>0, one
would use the KPZ value of 8. However, since we are in-
terested in the limit as A—0, where the KPZ nonlineari-
ty and kinetic surface tension vanish, it is instead neces-
sary to use the corresponding limiting value of S,
namely, B*=~0.3. One concludes that o ~£,(R*)/R*
~AT=B*9/2 a5 A_,0. However, as a practical matter,
this relation will be obscured by the presence of intrinsic
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FIG. 11. Growth probability P, vs N/N* for h =0, %, 1, 4
(shown) at fixed y , /y, =0.98.

J. W. EVANS AND T. R. RAY 50

fluctuations, and also by crossover effects as A—0.

Finally, we demonstrate in Fig. 11 the dramatic con-
vergence of P, versus N/N* to the deterministic step-
function form H(N/N*—1), in the mean-field limit
h— «. Here, we have fixed A or, actually, y ,/y,. The
corresponding rapid decrease of o(h)=§&(h)/R*(h) is
readily understood, since the intrinsic component &;(h) of
&(h) is rapidly quenched as h becomes nonzero, and
R*(h)~h'/? rapidly increases with A. The 50% decrease
of o as h increases from 1 to 4, so o ~h ~ 172, is consistent
with roughly constant § in the above formula. This is
reasonable for this 4 range, but we expect that the asymp-
totic decrease will be slower.

IX. CONCLUSIONS

In summary, we have provided a detailed and unified
analysis of interface propagation and nucleation phenom-
ena below the discontinuous monomer poisoning transi-
tion in the monomer-dimer surface reaction model with
adspecies diffusion. Precise definition and treatment of
propagation velocities and nucleus growth probabilities
are only possible here because the transition is to an ad-
sorbing state. This contrasts the situation for discontinu-
ous transitions in equilibrium systems at nonzero temper-
atures. We show that interface propagation is described
by the KPZ equation below the transition, with the KPZ
nonlinearity, as well as the kinetic surface tension, van-
ishing approaching the transition. These observations
are essential in elucidating the divergence of the critical
nucleus size approaching the transition. The sharpening
of the critical size approaching the transition (and with
increasing adspecies diffusion rates) is also elucidated
through a characterization of fluctuations at the interface
between reactive and poisoned states. In this contribu-
tion, we have also succeeded in providing a unifying
framework that can describe both the fluctuation-
dominated behavior of the lattice-gas model for low ad-
species diffusion rates and crossover to the deterministic
mean-field behavior for high diffusion rates.

All of the concepts and ideas developed here should
apply more generally for models incorporating discon-
tinuous transitions to adsorbing states. These include
more realistic models for CO oxidation [4], where the
presence of the dimer species (0xygen) does not complete-
ly inhibit the adsorption of the monomer species (CO).
We suggest, however, that their inclusion of cooperativity
into the adsorption mechanism, or of interactions be-
tween the adspecies, would generally result in the kinetic
surface tension of the reactive interface not vanishing at
the transition (cf. Ref. [37]). Also, we note that the in-
troduction of nonreactive desorption means that the tran-
sition is no longer to a trivial poisoned state, and the pre-
cise treatment of interface propagation and nucleus
growth probabilities no longer applies. We are currently
exploring these issues.
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APPENDIX A: THE CC ENSEMBLE
AND DETERMINATION OF CRITICAL SIZES

Simulation in the CC ensemble [24] at some fixed value
0% of 6, differs from conventional simulations only in
the adsorption component of the algorithm. Instead of
adsorbing different species with fixed relative rates, one
attempts to deposit 4 if 8 , <0*% and B, if 6 , > 6%, and
measures the asymptotic value y% of the fraction of at-
tempts to deposit 4. For an infinite system, (y%,0%)
should correspond to steady-state values in the conven-
tional (constant pressure) ensemble, and so y§ =y, for
the entire coexistence line 6,, <0% <1. Here, 6,, is the
limiting steady-state value of  , as y ,—»y, from below.
However, this behavior is modified by finite-size effects in
a way we exploit here.

For a finite L X L system (with periodic boundary con-
ditions), if 6 , =6% is chosen around 1, then the CC en-
semble selects a state where a linear strip of the A-
poisoned state coexists with a reactive strip. However,
for sufficiently high 6%, the L% 1—6%) non- 4 sites can-
not form a stable percolating reactive strip. Then one or
more nonpercolating reactive blobs will be formed and
y 4 will be selected to ensure that a blob of the mean size
has an equal chance of growth or shrinkage, thus main-
taining 0 4. As the system evolves, smaller blobs will oc-
casionally shrink and disappear and the current y , will
increase to accommodate the larger mean blob size and
corresponding lower mean radius of curvature. This pro-
cess will continue until just one blob remains and
y4—y 4 will correspond to an equal chance of growth or
shrinkage for that blob of N*(y%)=N=L%1-6%)
non-A sites. Thus, N*(y%) is the critical size corre-
sponding to y4. Although this relationship appears to
map out a middle unstable branch of the phase diagram
(see Ref. [24]), clearly this branch depends on L, i.e.,
1—6%~0(L™?), as L—, for fixed y%, and thus
N*(y4)

APPENDIX B: SPATIAL CONTACT
AND DIFFUSION PROCESSES

A simple paradigm for the reaction model considered
here is a “‘contact birth process” on a discrete space [10],
augmented by diffusion of species at rate h. Let p(I)
denote the probability that a new species is born separat-
ed from its parent by I. We set 3,p(l1)=1, 3,Ip(1)=0,
and 3,1%p(1)=12 so I, denotes the characteristic contact
or “reaction” range. Also, let b denote the total birth
rate. Then the concentration or population c(i), of
species at site i satisfies

(d/dt)e(i)=b3p(l)c(i+1)+hAc(i), (B1)
1

where A denotes the discrete Laplacian. Assuming c(i) is

slowly varying in space, one expands c(i+1) about i and,

retaining only terms to quadratic order (the diffusion ap-

proximation [10]), obtains
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(d/dt)e (i)=be(i)+(1bl>+h)Ac(i) . (B2)

Finally, after taking the spatial continuum limit, a trivial
change of variable shows that characteristic lengths and,
therefore, propagation velocities scale like (1b12+h)!/2.

To better mimic the reaction model of interest, one
should include nonlinearity in the birth or reaction term,
consider coupled equations for different species (as in
general deterministic epidemic models [10]), and, finally,
go beyond the mean-field description to treat spatial
correlations. Any of these changes preclude simple
analysis as above, but one expects characteristic lengths
and velocities to still approximately scale as a root-
mean-square sum of contributions from the reaction
range and the diffusion length.

APPENDIX C: MEAN-FIELD
REACTION-DIFFUSION EQUATIONS

Consider general lattice-gas reaction models involving
two adspecies 4 and B that hop with rate & to adjacent
empty sites, in the regime h— . Here the adlayer is
well mixed, or “randomized,” and evolution is described
on the “macroscopic” diffusion length scale of O(h!/?)
lattice vectors by appropriate mean-field (MF) reaction-
diffusion equations. These have the form [17]

36, /3t =R,(6 ,,05)+DV?0,+D(6,V°0,—6,V?0,) ,
(C1)

with {J,J'}={ 4,B}, where the R describe the reaction
mechanism, D =a?2h is the diffusion coefficient (for lattice
constant a), and the nonlinear corrections to the Lapla-
cian diffusion terms describe the interference of the pres-
ence of one species on the diffusion of the other (due to
site blocking). In the limiting case of infinite reaction
rate considered here, both species cannot exist at the
same macroscopic point on the surface, and these non-
linear terms drop out [8].

Choosing R; appropriate to the monomer-dimer reac-
tion, one finds a bistability region where both reactive
and 4-poisoned states exist. One can monitor the evolu-
tion of the interface between these states using the
above equations. For a planar interface, we previously
showed that the propagation velocity satisfies [8,17]
V,(MF)=D'?4'(y ;), where A’(y,) passes through
zero linearly with varying y, at an equistability point
Y4=y, (h=w) listed in Table I. We have also used
these equations to analyze the evolution of a circular re-
gion of the reactive state of radius R embedded in an A4-
poisoned background. Since the theory is deterministic,
the patch will either survive (for R > R *, say) or die (for
R <R™*), thus unambiguously determining a critical ra-
dius, R *(MF). Specifically, we have determined the pro-
portionality constant in the relationship
N*(MF)=m(R*)*=E’'(y ,)D. We find that R* is accu-
rately approximated by D/V, (error<5% for
Y4/y,>0.95), so E’'=~m(A’')"% Connections with
lattice-gas (LG) reaction model behavior for A — o in
Secs. IV and VII were made noting D<a’h,
V,(MF)<>aV,(LG), N*(MF)—a IN*(LG), and so 4’4
and E'«—E. For more details, see Ref. [41].
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FIG. 4. Snapshots of a portion (200 lattice spacings wide) of
the interface between reactive and poisoned states for A=0 and
for various h. Only A-filled sites are shown.
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FIG. 6. Schematic of fluctuations in a coarse-grained picture
of reactive interface evolution.



